Před patnácti lety vypustil Bill Clinton GPS z řetězů

Satelitní navigační systém GPS je dnes součástí prakticky každého mobilního telefonu, využívají jej záchranáři, piloti i námořní kapitáni. Vděčíme za to Billu Clintonovi.
Kapitoly článku

Inženýrský zázrak jménem Navstar GPS

Systém GPS se skládá z 32 satelitů 2. generace z období let 1990 až 2013, přičemž se už roky připravuje 3. generace GPS, která by měla zajistit vyšší přesnost a další služby podobně jako chystané evropské Galileo. Vleklá ekonomická krize posledních let však veškeré plány výrazně oddálila.

GPS je opravdu jedním z nejdokonalejších inženýrských počinů lidstva. Ostatně posuďte sami. Uvnitř vašeho mobilního telefonu najdete malý čip a anténu, která musí být schopna zachytit relativně slabý signál na kmitočtu 1,5 GHz, který letí ze vzdálenosti více než 20 tisíc kilometrů a vysílá jej satelit, který se sám pohybuje rychlostí okolo 14 tisíc km/h.

Jakmile spustíte přijímač GPS, za nějaký okamžik zachytí složitě modulovaný signál od první družice, který se skládá z několika subsignálů. Pro samotnou lokalizaci je nejdůležitější digitální kód C/A. Jedná se v podstatě o sled pseudonáhodných čísel, přičemž každý ze satelitů vysílá trošku jiný kód, aby nedošlo k záměně. Kdybyste takový signál naladili na rádiu a převedli na zvukové vlny, uslyšíte opravdu jen neurčitý šum, kód C/A se totiž ohromnou rychlostí neustále opakuje.

Přijímač GPS ve vaší kapse obsahuje vlastní generátor kódu C/A, který je přesně synchronizovaný s každou družicí. No a to už se dostáváme k samotné pointě. Než signál s aktuální fází C/A kódu dorazí z družice třeba právě do vašeho mobilního telefonu, čip v přijímači už generuje trošku jinou hodnotu a může zpětně zjistit, o jak velký časový posun se vlastně jedná. Ten odpovídá době, po kterou letěl signál prostorem. Pak už je to relativně snadné, díky známé rychlosti světla lze totiž vypočítat vzdálenost mezi satelitem a přijímačem.

Klepněte pro větší obrázek
Signál z družice GPS dorazil o něco později a už není synchronní s generátorem C/A v přijímači (Δt). Přijímač zjistí, o jaký posun se jedná a získá tedy dobu letu signálu mezi družicí a přijímačem. Díky známé rychlosti světla může vypočítat vzdálenost družice od přijímače.

Jelikož žijeme v trojrozměrném světě, tuto vzdálenost můžeme vyjádřit koulí. My jsme kdesi na jejím povrchu, zatímco družice GPS uprostřed. Abychom zjistili naši polohu na Zemi, potřebujeme ještě další dva satelity. Jeden z průniků tří koulí je pak nejspíše místo, kde se skutečně nacházíme a které se dalšími výpočty převede na souřadnicový systém WGS-84 vyjádřený už dobře známými stupni, minutami a vteřinami a zářícím puntíkem na mapě.

Klepněte pro větší obrázek
Zjištěním vzdálenosti k jednomu satelitu se dozvíme, že jsme někde na povrhu oranžové koule
Klepněte pro větší obrázek
Pokud známe vzdálenost ke dvěma satelitům, nacházíme se kdesi na průniku obou koulí, tedy na kružnici
Klepněte pro větší obrázek
Pokud změříme vzdálenost i ke třetímu satelitu, nacházíme se kdesi na průniku tří koulí, což jsou dva možné body. Jeden z nich se nachází mimo zemský povrch, můžeme jej tedy vyloučit. I v tomto případě však bude poloha velmi nepřesná a je třeba získat ještě signál ze čtvrtého satelitu pro korekční výpočty.

Einsteinova teorie relativity

Jestli vám to všechno nakonec připadá docela jednoduché, tak vězte, že tomu tak rozhodně není, takto to totiž funguje pouze v ideálních podmínkách kdesi na školní tabuli. Jelikož se vzdálenost počítá pomocí časové prodlevy, jde opravdu o každý okamžik. Pokud by se signál zpozdil o jedinou milisekundu, přijímač by vypočítal, že je od něj satelit vzdálený dalších 300 kilometrů! Nepřítelem je například už samotná atmosféra. Radiový signál interferuje s ionosférou ve vysokých výškách a dochází k lomu a zpoždění, které se může podepsat až pětimetrovou odchylkou. Další překážkou jsou pak odrazy signálu v zastavěných oblastech. Přijímač také musí přesně vědět, kde se v daných časech nacházejí samotné družice, aby mohl vypočítat správný průnik našich koulí.

A aby to bylo ještě složitější, do hry vstupují dokonce obě teorie relativity Alberta Einsteina. Jelikož se satelity Navstar pohybují oproti pozorovateli na Zemi ohromnou rychlostí, dochází u nich na základě speciální teorie relativity k drobnému zpomalení času. Jenže přesně opačným efektem zase působí obecná teorie relativity, poněvadž na družici vysoko nad povrchem působí gravitační pole Země s mnohem nižší intenzitou. Tyto časové rozdíly jsou sice pro člověka naprosto nepostřehnutelné, pro správný výpočet atomových hodin to je však oříšek, který by způsobil opět odchylku až několika metrů. Autoři systému s těmito relativistickými efekty tedy musejí počítat a hodiny jsou speciálně korigované. Fenoménem se v podrobnějším článku zabývá Osel.cz.

Almanachy, efemeridy a A-GPS

Aby se všem těmto jevům předcházelo, společně s C/A „šumem“ je v signálu zakódovaný almanach a efemeridy. Almanach obsahuje základní údaje o celém systému GPS, které přijímač potřebuje k synchronizaci, a efemeridy pak přesné informace o konkrétním satelitu. Zatímco tradiční přijímače bez internetové konektivity si tyto údaje musejí stahovat přímo z GPS signálu, což může po delší nečinnosti výrazně prodloužit dobu k prvnímu zachycení polohy až na několik minut, současné mobilní telefony a další kapesní počítače připojené k internetu si almanach a další údaje stahují z webu. Této technologii se souhrnně říká A-GPS, tedy asistovaný GPS.

Klepněte pro větší obrázek Klepněte pro větší obrázek
Aktuální textové almanachy se všemi podrobnostmi o satelitech a systému GPS. Tato data si díky internetu průběžně stahují GPS přijímače třeba v mobilních telefonech a mohou tak určit polohu rychleji, než by dekódovaly data přímo ze signálu GPS. 

Díky A-GPS může zařízení v ideálních podmínkách vypočítat první polohu v řádu několika sekund, všechna pomocná data už má totiž v paměti a stahuje si je zpravidla každý den. Ostatně podívejte se sami, almanachy GPS v několika textových formátech totiž najdete třeba na této adrese.

GPS je přesný díky WAAS/EGNOS

Nicméně ani tato data nemusejí vyřešit veškeré problémy s přesností, jednotlivé světové regiony proto budují korekční navigační systémy. Zatímco nad územím USA a Kanady se jedná o systém WAAS, v Evropě je to EGNOS, který stejně jako Galileo spravuje zdejší Evropská vesmírná agentura ESA. Právě díky těmto podpůrným systémům dnes můžeme v civilním využívání GPS dosahovat odchylek v ideálním případě méně než 2 metry.

Klepněte pro větší obrázek
Korekční systém EGNOS v praxi: černé puntíky RIMS jsou stanice, které přijímají signál GPS, který dále zpracovávají centra MCC a hotová data vysílají do korekčních satelitů stanice NLES (Zdroj: ESA)

EGNOS se skládá z pozemních stanic rozesetých po celé Evropě, které znají svoji přesnou geodetickou polohu a zároveň neustále měří polohu pomocí GPS. Rozdíl mezi skutečnou a satelitem zjištěnou pozicí pak odpovídá odchylce, kterou z daných regionů odesílají další speciální stanice do korekčních satelitů kompatibilních s GPS.

Diferenciální GPS

Kartografové a geodeti v terénu často používají ještě vyšší stupeň korekce, kterému se obecně říká DGPS – diferenciální GPS. Jedná se v podstatě o podobný princip jako u WAAS/EGNOS, nicméně bez použití speciálních družic. DGPS zařízení tedy přijímá klasický signál z GPS a zároveň pozemní rádiový signál z nejbližší stanice. Při této kombinaci je pak už určení polohy naprosto přesné.

Klepněte pro větší obrázek
Korekční stanice DGPS (Zdroj: Stefan Kühn, CC-BY-SA)

Antény DGPS jsou nicméně velké a kompletní zařízení mnohem dražší než klasické kapesní GPSka. Výzkumníci z mnoha univerzit se tedy pokoušejí vyřešit přesnost softwarovou cestou – složitou analýzou, která porovnává signály z většího množství běžných sensorů, které jsou součástí běžného mobilního čipsetu. Na University of Texas tak dnes například experimentují s „centimetrovým GPS“ – technologii, která dokáže správně interpretovat i relativně drobný pohyb.

 

 

Témata článku: , , , , , , Podobný princip, Albert Einstein, Správný výpočet, DGPS, Positioning System, GNSS, Vteřina, Billa, Madrid, Slabý signál, Satelitní systém, Družice, Diferenciální GPS, Let, Positioning Systém, Testovací režim, Uvolnění pravidel, Rádiový signál, Nepřítel